http://zh-v2.d2l.ai/chapter_natural-language-processing-applications/sentiment-analysis-rnn.html
当我第一次运行程序后,得到的结果较差,模型无法分辨部分较为显然的积极与消极的语句,但是在运行第三次后,模型分辨能力显著提升,这是什么原因呢?谁能告诉我原因呢,感谢
When I first run the code ,I got a worse result. The model can’t recognize some obvious sentence,then I ren the code twice,it perforned better a lot then the first training,can some one tell me the reason,thank you.
你需要在这个cell里边,添加代码net.apply(init_weights);
刷新一下net的权重,否则每运行一次都是和上次运行的结果去比较。
lr, num_epochs = 0.01, 5
net.apply(init_weights);
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices)
示例程序在m1跑起来超级慢,已经加了device mps,gpu 100%了。几个小时才跑了一个epoch
m2 也跑不过来。改用 3060了,100s
sure thing … you just do more epochs simply on the same model
some more questions:
a. is it possible to apply BERT embedding instead of GloVe there?