Topic | Replies | Views | Activity | |
---|---|---|---|---|
实战Kaggle比赛:狗的品种识别(ImageNet Dogs) |
![]() |
0 | 630 | November 21, 2022 |
实战 Kaggle 比赛:图像分类 (CIFAR-10) |
![]() |
0 | 697 | November 21, 2022 |
风格迁移 |
![]() |
0 | 627 | November 21, 2022 |
门控循环单元(GRU) |
![]() |
0 | 739 | November 21, 2022 |
全卷积网络 |
![]() |
0 | 714 | November 21, 2022 |
转置卷积 |
![]() |
0 | 570 | November 21, 2022 |
语义分割和数据集 |
![]() |
0 | 662 | November 21, 2022 |
区域卷积神经网络(R-CNN)系列 |
![]() |
0 | 708 | November 21, 2022 |
单发多框检测(SSD) |
![]() |
0 | 644 | November 21, 2022 |
目标检测数据集 |
![]() |
0 | 688 | November 21, 2022 |
多尺度目标检测 |
![]() |
0 | 702 | November 21, 2022 |
锚框 |
![]() |
0 | 605 | November 21, 2022 |
目标检测和边界框 |
![]() |
0 | 804 | November 21, 2022 |
微调 |
![]() |
0 | 581 | November 21, 2022 |
图像增广 |
![]() |
0 | 715 | November 21, 2022 |
循环神经网络的简洁实现 |
![]() |
0 | 574 | November 21, 2022 |
循环神经网络的从零开始实现 |
![]() |
0 | 658 | November 21, 2022 |
循环神经网络 |
![]() |
0 | 547 | November 21, 2022 |
语言模型和数据集 |
![]() |
0 | 634 | November 21, 2022 |
文本预处理 |
![]() |
0 | 612 | November 21, 2022 |
序列模型 |
![]() |
0 | 693 | November 21, 2022 |
稠密连接网络(DenseNet) |
![]() |
0 | 722 | November 21, 2022 |
残差网络(ResNet) |
![]() |
0 | 668 | November 21, 2022 |
批量规范化 |
![]() |
0 | 744 | November 21, 2022 |
含并行连结的网络(GoogLeNet) |
![]() |
0 | 709 | November 21, 2022 |
使用块的网络(VGG) |
![]() |
0 | 637 | November 21, 2022 |
深度卷积神经网络(AlexNet) |
![]() |
0 | 840 | November 21, 2022 |
卷积神经网络(LeNet) |
![]() |
0 | 737 | November 21, 2022 |
汇聚层 |
![]() |
0 | 698 | November 21, 2022 |
多输入多输出通道 |
![]() |
0 | 723 | November 21, 2022 |